Помощь - Поиск - Пользователи - Календарь
Полная версия: нахождение координат вектора
Форум «Всё о Паскале» > Образование и наука > Математика
18192123
найти координаты вектора x, если известно, что он перпендикулярен векторам a1={2,-3,1} и a2={0,1,3} , образуя с ортом j тупой угол и |x|=26
мисс_граффити
ты решила вот такими сухими заданиями поскидывать нам всю контрольную работу/модуль/РГР (как там оно у вас называется). Ну-ну.
Продолжай в том же духе.
18192123
Цитата(мисс_граффити @ 29.10.2006 19:00) *

ты решила вот такими сухими заданиями поскидывать нам всю контрольную работу/модуль/РГР (как там оно у вас называется). Ну-ну.
Продолжай в том же духе.

нет, ты ошибаешься. Я хочу понять, как решить это задание. Если можешь, то объясни пожалуйста
мисс_граффити
условие перпендикулярности векторов знаешь?
18192123
Цитата(мисс_граффити @ 29.10.2006 20:25) *

условие перпендикулярности векторов знаешь?

ab=0,
но не знаю, что дальше
мисс_граффити
а если через координаты?
18192123
Цитата(мисс_граффити @ 29.10.2006 21:04) *

а если через координаты?

a(x)b(x)+a(y)b(y)+a(z)b(z)=0?
мисс_граффити
похоже...
если честно, я точно не помню - но вроде так.
теперь ты можешь составить систему уравнений.
обозначь неизвестные координаты x,y,z. то есть три неизвестных.
2 уравнения ты получишь из перпендикулярности (ее условие ты написала. просто подставь туда известные координаты - для первого и второго векторов).
а третье - из длины (длина равна корень из x^2+y^2+z^2).
осталось решить систему 3х ур-ний с 3мя неизвестными
Clerick
Цитата(мисс_граффити @ 30.10.2006 2:32) *

похоже...
если честно, я точно не помню - но вроде так. <...>


Это точно так. Сам сейчас это же в школе и повторяю..

Только проще, наверно, будет записать следующим образом: x1x2+y1y2+z1z2=0, где x1, y1, z1 - координаты первого, для втрого - x2, y2, z2 0ессно.
Это текстовая версия — только основной контент. Для просмотра полной версии этой страницы, пожалуйста, нажмите сюда.