Цитата
очень хочу чтобы рассказали!!!
Раз очень хотите, то расскажу. Только * это у меня отрицание.
Итак, я дам универсальный алгоритм, как это делается.
1. С помощью равносильностей (А => В) = ( *А + В) и (А <=>В) =((*А) + В)(А + *В) формулу приводят к равносильной формуле, не содержащей импликации и эквивалентности.
2. С помощью равносильностей **A=A, *(А + В) = (*А)(*В), *(АВ) = (*А)+(*В) формулу приводят к виду, в котором отрицание может присутствовать только непосредственно перед пропозициональной переменной.
3. Используя равносильность А+(ВС) = (А+С)(А+С), приводят формулу к КНФ.
4. С помощью равносильностей А + А = А, АА = А, А+0=А, А0=0, А1=1, А+1=1 удаляют повторные вхождения переменных, повторные вхождения одинаковых элементарных дизъюнктов и вхождения тождественно ложных элементарных дизъюнктов.
Если в результате получим пустое знакосочетание, то исходная формула тождественно истинная; ее преобразовать в СКНФ нельзя. Действие алгоритма в этом случае завершено.
5. По правилу расщепления (A = (A + B)(A + *B)) в каждый элементарный дизъюнкт, который содержит не все переменные, добавляют недостающие. В результате каждый дизъюнкт будет совершенным.
6. С помощью равносильности АА = А удаляют повторные вхождения одинаковых элементарных дизъюнктов. В результате приходим к СДНФ формулы.
В твоем случае это будет выглядеть так:
AB+AC+*A*B.
1. Можно опустить, т. к. от импликаций мы избавились.
2. Так же можно опустить, т. к. отрицание находиться непосредственно перед пропозициональной переменной.
3. [AB]+(AC)+*A*B=( (AB) +[A] )( (AB) + [C] )+*A*B=[(A+A)(A+B)(A+C)(B+C)]+(*A*B)={(A+A)[(A+B)(A+C)(B+C)]+*A }{ (A+A)[(A+B)(A+C)(B+C)]+*B };
Это не все, сейчас я рассмотрю первую скобку, а затем вторую, просто, чтобы было удобнее воспринять. Тут стоить отметить, что [] я просто выделял отдельную формулу (т. е. читаем ее как одну букву). А в {} чисто для удобства чтения, несут смысл обыкновенных скобок. Итак первая скобка (то что в {}).
(A+A)[(A+B)(A+C)(B+C)]+*A=(A+A+*A) ((A+B)[(A+C)(B+C)]+*A)= {A+A+*A}{A+B+*A}{(A+C)[(B+C)]+*A}=
(A+A+*A)(A+B+*A)(A+C+*A)(B+C+*A)
Можно заметить, что для второй скобки разложение будет аналогичным, только вместо *А будет стояить *В, т. е. вторая скобка преобразуется к виду: (A+A+*В)(A+B+*В)(A+C+*В)(B+C+*В).
Теперь мы видим, что у нас есть КНФ.
4. (A+A+*A)(A+B+*A)(A+C+*A)(B+C+*A)(A+A+*В)(A+B+*В)(A+C+*В)(B+C+*В)=(A+*A)(1+B)
(1+C)(*A+B+C)(A+*B)(A+1)(A+*B+C)(C+1)=111(*A+B+C)(A+*B)1(A+*B+C)1=(*A+B+C)(A+*B)
(A+*B+C)
Видим что получилось не пустое знакосочетание, значит продолжаем. Расчепляем.
5. (*A+B+C)[(A+*B)](A+*B+C)=(*A+B+C)(A+*B+С)(A+*B+*С)(A+*B+C)
6. Удаляем повторяющиеся: (*A+B+C)(A+*B+С)(A+*B+*С)(A+*B+C)=(*A+B+C)(A+*B+*С)(A+*B+C)
Как видим получили то же самое. Но путь более длителен. Правда, бывают случае, когда он и короче. Если что непонятно, то могу все уточнить.