Есть 2 способа задействовать эту замечательную возможность:
- Заключить код на ассемблере между словами asm и end
- Написать процедуру с указанием директивы Assembler, что в принципе не сильно отличается от первого варианта, т.к. код по прежнему находится между asm и end
Ну, на самом деле применений целое море, о чём можно убедиться полистав этот раздел форума.
Рассмотрим вопрос адресации в реальном режиме (именно он используется "by def" при компиляции в BP).
Адрес состоит из двух частей: сегментной части и смещения. Обе части являются 16-ти разрядными двоичными числами или, что на практике и применяется, 4-х разрядными шестнадцатиричными.
Рассмотрим пример и на нём разберёмся, что и какая часть значит:
Пусть сегментная часть (далее Seg) = $ABCD, а смещение (далее Ofs) = $1234. Это означает, что эта пара Seg:Ofs хранит следующий адрес Seg * $10 + Ofs = $ABCD * $10 + $1234 = $ABCD0 + $1234 = $ACF04. Как легко заметить, пользуясь таким способом адресации мы можем указать адрес любой ячейки памяти в пределах первого мегабайта ($00000..$FFFFF) и даже чуть-чуть больше, но это не имеет значения, т.к. процессор в реальном режиме даёт доступ только к первому МБ.
Возникает естественный вопрос: а зачем нужен этот геморрой, и почему нельзя просто указывать полный адрес? А вот нельзя. А потому, что процессор при работе с памятью опирается на информацию, которая хранится в его регистрах, а т.к. мы используем 16-битный вариант команд, то, соответственно, в 1 регистр более 16 бит (4 16-ричные цифры) не впихнуть. Поэтому и приходится использовать 2 регистра: сегментный и какой-нибудь, который можно использовать для адресации.
Рассмотрим предназначение регистров процессора:
- CS - Code Segment, сегмент кода. В этом регистре хранится сегментная часть адреса исполняемой команды.
- DS - Data Segment, сегмент данных. Тут хранится сегментная часть адреса тех данных программы, которыми она пользуется в текущий момент.
- SS - Stack Segment, сегмент стека. Хранит -||- области памяти, которая сейчас используется как стек.
- ES - Extended Segment, дополнительный сегмент. Используется для того, чтобы программа могла использовать данные хотя бы из 2 участков памяти, которые не находятся рядом (например, в DS $1000, а в ES - $F000), а так же для некоторых команд, но об этом не сейчас.
- AX - Accumulator, регистр общего назначения, т.е. можно его использовать как угодно, но отведён на математические вычисления, т.к. некоторые команды требуют того, чтобы их операнд находился именно в AX, а некоторые команды с использованием AX выглядят на байт короче после компиляции, нежели с каким-нибудь другим регистром.
- BX - Base, тоже регистр общего назначения, но его конёк в том, что его можно использовать для адресации, т.е. число, хранящееся в нём при необходимости может быть расценено, как часть адреса - смещение.
- CX - Counter, выделяется от остальных общих регистров тем, что команда реализации циклов (ну ещё пара, но куда реже) предполагает свой аргумент именно в CX. Т.е. при программировании на ассемблере CX выступает в роли Паскалевского i
- DX - Data. Просто регистр общего назначения. Такой на всякий случай - ничего специфического в нём нет.
- IP - Instruction Pointer. Этот регистр хранит смещение текущей команды, т.е. пара CS:IP указывает на команду в памяти, которая вот-вот будет выполнена процессором.
- SP - Stack Pointer. Хранит смещение верхушки стека (SS:SP). Очень важное значение, т. к. процессор при обработке команд работы со стеком рассчитывает именно на этот регистр.
- BP - Base Pointer. Регистр для хранения смещения. Как правило используется в процедурах для адресации переменных через стек. Отличается от SP тем, что процессору его значение не особо интересно, но адресация через этот регистр идёт так же по SS (если не указать другой).
- SI, DI - Source Index и Destination Index. Два регистра предназначенные для хранения смещений. Особенностью их является то, что некоторые команды рассчитывают, что их операнды хранятся именно тут.
Теперь давайте рассмотри примитивный набор команд.
mov dst, src копирует значение src в dst. Есть один важный момент: командой mov нельзя скопировать значение одной переменной в другую за один приём.
Примеры: (Показать/Скрыть)
inc p увеличивает на 1 значение операнда. После компиляции эта команда занимает меньше места чем команда прибавления единицы.
Примеры: (Показать/Скрыть)
dec p соответственно уменьшает операнд на 1.
add dst, src прибавляет к src значение dst. Результат сохраняется в dst, так что просто число там написать нельзя.
Примеры: (Показать/Скрыть)
sub dst, src вычитает из dst значение src.
mul n умножает значение регистра AL (AX) на n. Если n размером в 1 байт, то происходит следующее: AX = AL * n, если же слово, то старшие 16 бит произведения сохраняются в DX, а младшие в AX, т. е., умножив AX=$1010 на $100 получим в DX $0010 и в AX $1000.
Примеры: (Показать/Скрыть)
div n делит значение в AX (DX:AX, как в команде mul) на n. При этом остаток сохраняется в AH (DX), а целая часть от деления в AL (AX).
Например: (Показать/Скрыть)
cmp a, b - сравнивает значения a и b и устанавливает флаги процессора в соответствии с результатом сравнения.
Например: (Показать/Скрыть)
jmp L - команда безусловного перехода на метку L. То что в BP называется GoTo.
Например: (Показать/Скрыть)
j<cc> L - серия команд условного перехода. Тут <cc> определяет условия перехода:
- jz, je - переход, если равно
- jb - переход, если меньше (числа расцениваются как беззнаковые)
- ja - переход, если больше (числа расцениваются как беззнаковые)
- jl - переход, если меньше (числа расцениваются как знаковые)
- jg - переход, если больше (числа расцениваются как знаковые)
Например: (Показать/Скрыть)
Рассмотрим ещё команду loop L она сравнивает CX с 0 и, если он отличен, то уменьшает его на 1 и делает переход на указанную метку.
Пример: (Показать/Скрыть)
Теперь для закрепления сказанного рассмотрим реализацию вычисления факториала:
Function Factorial(n: Integer): Integer; Assembler;
Asm
mov CX, [n] {Проверим, может n<0?}
cmp CX, 0 {Сравним с 0}
jl @@1 {Если меньше, то считать не будем}
mov AX, 1 {Начальное произведение}
@@2: {В CX мы уже загрузили кол-вл итераций, так что к циклу готовы}
mul CX {Домножим текущее произведение на значение счётчика}
loop @@2 {И продолжим цикл}
jmp @@3 {Произведение вычислено - можно выходить из функции}
@@1: {А, если попросили вычислить факториал отрицательного числа}
mov AX, 0 {То вернём 0}
End;
Var n: Integer;
Begin
ReadLn(n);
WriteLn(Factorial(n))
End.
Стоит объяснить ещё и то, как возвращаются значения функций. Это всё зависит от типа результата:
Byte, Char - через AL
Word, Integer - через AX
LongInt - старшая часть в DX, а младшие 16 бит в AX.
Pointer - сегментная часть в DX, смещение - AX.
Остальные типы возвращаются более извращённым способом...
Так же отмечу, что убрав проверку на <0 можно переписать эту функцию так:
Function Factorial(n: Integer): Integer; Assembler;
Asm
mov CX, [n]
mov AX, 1
@@1:
mul CX
loop @@1
End;
Правда проблема переполнения остаётся, но зато покажите мне компилятор, который стандартное
Function Factorial(n: Integer): Integer;
Var
i, Res: Integer;
Begin
Res:=1;
For i:=2 To n Do
Res:=Res*n
Factorial:=Res
End;
скомпилирует вот так вот красиво...