Цитата(Lapp @ 9.01.2010 23:59)
Про использование спирали во второй задаче я напишу чуть позже )).
Так, продолжим наш сериал )).
Итак, началось с этого:
Цитата
я бы предложил выбрать один из многоугольников и перенумеровать остальные по спирали от него
Само по себе слово "перенумеровать" означает присвоить каждому номер, то есть поставить во взаимно-односначное соответствие с натуральным рядом. Заметь: именно
каждому встреченному присвоить уникальный
номер. Например, нумерация четных чисел, больших нуля, может быть сделана присвоением каждому номера, вдвое меньшего его величины. Еще раз: непременным условием успешного нумерования является наличие номера у каждого объекта после окончания процедуры. "Процедурой" в случае четных чисел можно считать произнесение фразы, написанной мной в предыдущем предложении. В общем случае, процедурой является определение правила пересчета.
Продолжаю. В начальном варианте, по-видимому, предполагалось такое развитие спирали, которое явно нумерует шестиугольники пересеканием. Затем, когда я указал на возможное наличие предельных точек (ПТ), спираль стала нумеровать, по-видимому, целые "счетные кластеры" (мой термин), а также появились некие "параллельные спирали" (твой термин). Возможно, я не вполне точно следую тому, что ты имел в виду, но ты так ни разу и не определил точную процедуру. Что случилось? Не ты ли требуешь от спрашивающих точно сказать, что они хотят (могу привести примеры тем))? Куда девалась твоя дотошность в данном случае? Я понимаю, что в первом мессадже действительно мог быть лишь один намек, а не полное доказательство. Но когда спор продолжился, точного определения процедуры так и не появилось. А дело в том, что этот способ вряд ли существует..
В примере в том мессадже (с интервалами) я хотел сказать, что способ доказательства должен быть верным. И если хотя бы один элемент множества выпадает, этот способ доказательства нельзя считать верным. Заметь, я не говорю, что множество не счетное, я говорю только, что способ доказательства его счетности неверен. Давай рассмотрим подробнее..
В том примере с интервалами может быть по крайней мере два выхода из положения.
1. начинать подсчет с интервала-отщепенца, а потом переходить к остальным;
2. подсчитать сначала
подмножество, а потом сказать, что объединение счетного и конечного множества - счетно.
Во втором случае решение разбито на две части. Хотя можно считать, что центр тяжести в первой, а вторая - ерундовая добавка, но все равно
это уже не есть прямой пересчет. Если твоя спираль проходит через счетные кластеры - это тоже уже не есть прямой пересчет. Но это еще полбеды..
Если ты собираешься теперь перенумеровывать такие вот счетные кластеры, ты должен что-то сказать в защиту их расположения на плоскости. И это что-то должно исходить из геометрических особенностей данных фигур (равносторонние непересекающиеся шестиугольники) - то, о чем ты вообще по какой-то странной причине избегаешь говорить. Хорошо, невложенность тебе казалось естественной. Хотя доказательство этого факта, если я правильно помню, являлось предметом одной из олимпиадных задач - ладно, я готов поверить. Но как ни крути, тебе придется доказать, что таких счетных кластеров на плоскости счетное количество - либо с помощью спирали (точного ее представления), либо еще как. Если ты так и не представишь точный способ или проведешь доказательство этого факта "еще как", то.. то я вообще не понимаю - а при чем тут спираль?
. Тогда просто достаточно сказать, что счетное объединение счетных множеств счетно..
Короче, я жду точного определения "спирали". То есть так: начинаем с такой-то точки, идем на север, сворачиваем туда-то через столько-то.. если встречаем (пересекаем, касаемся..), то присваиваем номер такой-то.. в результате мы пройдем всю плоскость (удалимся от начала на любое наперед заданное расстояние во всех направлениях) потому что... Только так, и никак иначе.
В примере с интервалами "спираль" не прошла, потому что не смогла перешагнуть через единицу. Номера закончились, нумеровать "отщепенца" было нечем. В этом примере мы легко можем модифицировать решение, чтобы сделать его верным. Можем ли мы сделать это в случае твоей спирали? Я не уверен.
Давай рассмотрим еще один пример.
Счетное множество точек на плоскости, сходящихся к каждой точке с целыми координатами (ЦТ). То есть каждая ЦТ является предельной (а все остальные - нет), доопредели его точно сам, если хочешь. Вот в этом случае (я считаю его упрощенным, поскольку тут зафиксированы предельные точки) ты сможешь провести "спираль" так, чтобы она пересчитала все точки? Я не исключаю этого, но боюсь, в этом случае она вряд ли сохранит хоть какой-то намек на родственные отношения с другими спиралями )). Если же твоя спираль будет "считать" только предельные точки, то - а зачем она вообще? Хорошо, ты разбиваешь задачу на два этапа: пересчет ПТ и объединение их окрестностей - имеешь полное право. Но тогда в оригинальной задаче (про шестиугольники) я попрошу тебя выделить два этапа, одним из которых будет пересчет по спирали предельных точек.. И, должен тебе признаться, я тебе не завидую, потому что на основе геометрии доказывать тут, что ты сможешь провести спираль через все ПТ так, чтобы пройтись по всей плоскости - это ооооочень непросто, мне кажется.. То есть, например, такой вопрос: в нашем множестве предельные точки есть (пример легко привести), а вот есть ли предельные точки у множества ПТ? Я, например, с наскока не могу ответить. Мне пока кажется, что да, могут быть. А ты можешь? Или, скажем, может ли быть множество ПТ плотным?
Спираль - вовсе не такое уж мощное оружие, как кажется иногда на первый взгляд. Ей можно пересчитать все ЦТ (то есть просто точки с целыми координатами, без сгущения к ним) на плоскости, но для пересчета всех точек с рациональными координатами (РТ) она абсолютно не годится. То, что я пытаюсь тебе сказать, как раз и есть, что нужен более подробный геометрический анализ, чтобы сказать - точно ли наше множество больше похоже на множестов ЦТ, чем на РТ? Я пока не могу дать ответа на этот вопрос. Знаю только, что раз ПТ могут существовать - это уже точно сложнее, чем просто множество ЦТ. И до того, как ты доказал, множество может быть хоть континуумом, хоть чем. Так что говорить, что спираль пересечет счетное количество предельных точек - весьма преждевременно..
Не знаю, удалось ли мне указать тебе на то, в чем состоит твоя ошибка.. Это, я бы сказал, задача неблагодарная. Я усвоил это еще по временам преподавания матанализа в спецшколах и на кружках при мехмате МГУ. В большинстве случаев (но не во всех) легко отличить верное решение от неверного, но вот объяснить, в чем именно состоит ошибка - это иногда очень непросто.. )) Если у тебя остаются вопросы - давай продолжим наш квест за истиной)).