1. Заголовок темы должен быть информативным. В противном случае тема закрывается и удаляется ... 2. НЕ используйте форум для личного общения, все что не относится к обсуждению темы - на PM! 3. Одна тема - один вопрос (задача) 4.Спрашивайте и отвечайте четко и по существу!!!
Помогите разобраться! 1. Из 25 экзаменационных билетов 5 хороших. 3 студента берут билеты. 1.1 Сколькими способами они могут это сделать? 1.2 Сколько существует способов получения хорошего билета 2 студентами?
2. Сколько натуральных чисел, меньших ста 2.1 при возведении в квадрат дают число, оканчивающееся на единицу? 2.2 при возведении в куб дают число, оканчивающееся на 11?
3. Сколько 2-хзначных чисел делится на 18?
В 1.1, как мне кажется, порядок распределения билетов существенен для студентов, поэтому имеем дело с размещениями. (Я права?) Что касается остальных задач - не знаю даже с чего начать.....
1.1 размещение без повторений(без повторений !) вычисляется по формуле n!/(n-m) n=25 m=3 т.е. результат будет равен 25!/(25-3)
1.2 та же формула n=5 m=2 НО!!!Ничего не сказано про 3-его студента(только 2 студента возьмут хорошие билеты или хотябы 2) т.е. этот ответ для условия хотябы ;
если только 2 студента, то нужно посчитать по той же формуле для 3х студентов и найти разницу : 5!/(5-3)-5!/(5-2) ,это равно 20
2.1 какие числа вообще дадут число ,оканчивающееся на 1 ,при возведении в квадрат ? - те и только числа ,оканчивающиеся на "1" или на "9" . в нашем случае это по 2 числа из каждого десятка ,т.е. {1 ,9 ,11 ,19 ,... ,91 ,99} Ответ:20 чисел. 2.2 ответ:1 почему?:это число ,заканчивающееся на 1 ,т.к. только 1^3 заканчивается на 1 (10a+b)^3=1000*a^3+300*a^2*b+30*a*b^2+b^3 последние 2 разряда будут определяться 2мя последними слагаемыми : b^3+3*a*b^2 b=1(см. выше) 30*a+1 заканчивается на "11" 30a заканчивается на 10 3а заканчивается на 1 следовательно ,а=7 ( используемая литература : таблица умножения). число наше 10а+b ,т.е.71. 3 числа делятся на 18 ,т.е. на 2 и на 9 одновременно 2-хначное число (10a+b) признак делимости на 9 : a+b делится на 9 признак делимости на 2 : b делится на 2 a=9-b b=0,2,4,6,7,8 a=9,7,5,3,2,1 5 чисел
Лао-Цзы : Знать много и не выставлять себя знающим есть нравственная высота. Знать мало и выставлять себя знающим есть болезнь. Только понимая эту болезнь, мы можем избавиться от нее.