Помощь - Поиск - Пользователи - Календарь
Полная версия: Рациональное квадратное число
Форум «Всё о Паскале» > Образование и наука > Математика
kumino
Что такое рациональное квадратное число? Вот я решал задачу Иоанна Палермского и считал, что это значит квадрат рационального числа. Но тогда решений нет, а сказано найти такое число! Значит, данное определение неверно.. Подскажите верное.. smile.gif
TarasBer
> Но тогда решений нет

Почему?
Чем 4 и 9 не подходят?
kumino
Уравнение
x^2+5=y^2
x^2-5=z^2
не имеет решения в рациональных числах

Доказательство:
Переводим его в уравнение
x^2+5(n^2)=y^2
x^2+10(n^2)=z^2
для натуральных чисел.
Пусть k=y-x, l=y+x, значит y=(l+k)/2, x=(l-k)/2
Тогда получаем
kl=5(n^2)
x^2+10(n^2)=0,25(l^2)+0,25(k^2)-0,5kl+10(n^2)=0,25(l^2)+0,25(k^2)+1,5kl
И 4(z^2)=l^2+k^2+6kl
Случай 1
l и k кратны 3. Значит z кратно 3 и n тоже.
Переходим к новым k,l,z,n:
k/3,l/3,z/3,n/3

Случай 2
Оба числа k и l не кратны 3.
l^2+k^2+6kl=2(mod 3)
А 4(z^2)=0 или 1(мод 3)

Случай 3
Ровно одно из чисел k,l кратно 3.
Значит, kl кратно 3 и не кратно 9.
Т.к kl=5(n^2)
,то n^2 кратно 3 и не кратно 9, что не может быть.


Добавлено через 2 мин.
Цитата(TarasBer @ 17.03.2012 22:37) *

> Но тогда решений нет

Почему?
Чем 4 и 9 не подходят?

Не понял... в этой задаче же 3 а не 2 числа!
9+5=14-не квадрат
4-5=-1 то же самое
Это текстовая версия — только основной контент. Для просмотра полной версии этой страницы, пожалуйста, нажмите сюда.