Цитата(-Hex- @ 8.01.2007 21:41)
Во-первых, у нас просто не примут доказательство в таком виде как ты даеш. На слова типа "можем отобразить, можем пересчитать" препод тупо скажет -"не можем! если не согласен, докажи что можем".
Hex, из того, что ты не понял доказательства не нужно делать вывод, что оно неполное. На месте твоего препода я бы сказал абсолютно то же самое,
если бы мне преподнесли утверждение
без доказательства. В моем решении есть доказательства почти всех утверждений (одно опущенное привожу ниже), которые таковых доказательств требуют. Например, я не говорю просто "можно пересчитать", а говорю "можно пересчитать с помошью змейки". "Змейка" выступает в качестве явного алгоритма пересчета, что и есть в данном случае доказательство возможности пересчета!
Цитата(-Hex- @ 8.01.2007 21:41)
Вобщем в задачах на доказательство требуют чтоб любое высказывание было математически подтверждено.
Абсолютно согласен с вашими преподами - respect им от меня. Слушай, даже дав тебе абсолютно полное до мелочей доказательство, я не уберегу тебя от вопросов по поводу его деталей. Вопрос может быть даже не касающийся собственно доказательства, я просто по терминам и т.п. Поэтому я очень рекомендую тебе
действительно разобраться с вопросом. Я не хочу, чтоб ты вызубрил решение наизусть и отбарабанил его на зачете - это тебе не поможет все равно. Я хочу, чтобы ты разобрался. И скажу тебе, писать значки - не самый лучший способ разобраться. Не путай математическое подтверждение с каракулями, не подменяй математику значками. Тебе кажется, что препод к тебе придирается, на самом деле ты скорее всего действительно упускаешь важную часть доказательства - что, впрочем, не означает, что ее можно написать только значками. Теория множеств требует определенного стартового уровня абстракции мышления - возможно, ты его еще не достиг. И я пытаюсь тебе показать, что есть что - тебе же только нужно вдуматься в мои рассуждения.
Цитата(-Hex- @ 8.01.2007 21:41)
Во-вторых, я учусь не на русском, поэтому может гдето не совсем улавливаю смысл русских терминов.
Я понял, на каком языке ты учишься (по ip), но я вижу, что русский у тебя на вполне нормальном уровне, достаточном для
понимания (видел бы ты как тут иной раз пишут.. хоть стой хоть падай!). Что касается терминов, то я пока употребил не так много.. Но если тебе не ясны какие-то - спрашивай.
Цитата(-Hex- @ 8.01.2007 21:41)
все числа - это надо понимать так что f:C->N^4 опеределена для ВСЕХ с? если так, то согласен, это логично.
Не все числа, а "все числа такого вида".
Когда ты начинаешь употреблять обозначения, которые ты не определил, это может внести только путаницу. Учти, что обозначения C, а также M и N - не такие уж и мировые стандарты. Говори словами (или определяй обозначения) - и все будет понятно.
Каждое число "такого вида" представляется хотя бы одним способом в виде n/(2)^k + m/(3)^r (по определению). Поэтому, конечно, базовое отображение определено для
всех таких чисел. Другое дело, что одно и то же число, возможно, имеет не одно такое представление..
Цитата(-Hex- @ 8.01.2007 21:41)
а однозначно отображаются - f( c)->(m,n,k,r), так что каждому c соответствует один единственный набор (m,n,k,r)? Но ведь это не так?! ведь ты сам строкой выше сказал - "возможно, что одному числу соответствует несколько таких четверок". Вот тут вот я путаюсь...
Я не говорил, что есть однозначное отображение на
все множество "четверок" (N^4, если нравится). Я сказал, что есть однозначное отображение на его подмножество. Рассуждение такое (его я действительно опустил в расчете на то, что ты додумаешь)...
Если четверка (n,k,m,r) порождает то же самое число а, что и (n1,k1,m1,r1), то есть
n/(2)^k + m/(3)^r = n1/(2)^k1 + m1/(3)^r1 = а,
а также если таких четверок больше двух (включая бесконечное количество), то выберем из этих четверок ту, у которой минимально число n. Если таких четверок все равно больше одной - выберем из них ту, у которой второе число (то есть k) минимально, и так далее. В результате получится одна "четверка", которую и поставим в соответствие числу "а". Двум разным числам "а" будут соответствовать заведомо разные "четверки", так как если они будут одинаковые, то и число дадут одно и то же.
Это понятно?
Цитата(-Hex- @ 8.01.2007 21:41)
и, кстати спасибо, ты мне подсказал вообще элементарное решение))
Если не трудно, приведи его. Только не могу представить, что может быть элементарнее того, что я говорю..
Цитата(-Hex- @ 8.01.2007 21:41)
а вот зачем: в выражении n/(2)^k + m/(3)^r, все переменные - целые числа, (2)^k и (3)^r тоже целые, следовательно дроби n/(2)^k и m/(3)^r имеют вид p/q и принадлежат Q, то есть рациональным числами. Сумма двух рационалных чисел также является числом рациональным. Следовательно множество С является подмножеством множества Q и обладает мошьностью a<=алеф-ноль. С другой стороны очевидно что множество С бесконечно, следовательно мошьность a>=алеф-ноль. Из пересечения последних условий следует a=алеф-ноль. С счетно.
Все верно. Но дело в том, доказательство счетности рациональных чисел абсолютно идентично тому доказательству, которое привел я. То, что там вместо "чктверок" используются "пары" - согласись, не различие. И
если ты умеешь доказывать, что множество рациональных чисел счетно - все в порядке, можешь доказывать этим способом. Я же, увы, не знал, что ты можешь использовать это в доказательстве и строил свое док-во от основ (аналогично доказательству счетности рациональных). Так это и есть то самое "элементарное решение"? Ну, я свое мнение уже высказал..