
![]() |
1. Заголовок темы должен быть информативным. В противном случае тема закрывается и удаляется ...
2. НЕ используйте форум для личного общения, все что не относится к обсуждению темы - на PM!
3. Одна тема - один вопрос (задача)
4. Спрашивайте и отвечайте четко и по существу!!!
![]() ![]() |
![]() |
Fanat |
![]()
Сообщение
#1
|
![]() Fanat ![]() ![]() ![]() Группа: Пользователи Сообщений: 261 Пол: Мужской Реальное имя: Сергей Репутация: ![]() ![]() ![]() |
Не знаю здесь спросить или нет...начали решать задачи в которых требуеться максимум функции находить...а матан подзабыл...не могли бы привести алгоритм нахождения максимума функции и минимума за компанию на отрезке [a,b] и в целом...что там связано с производными...а как именно делать не помню...
![]() |
Tan |
![]()
Сообщение
#2
|
![]() Профи ![]() ![]() ![]() ![]() Группа: Пользователи Сообщений: 559 Пол: Мужской Реальное имя: Бруно Репутация: ![]() ![]() ![]() |
Находишь производную первого порядка. Потом приравниваешь к нулю, корни это будут экстремумы функции, то есть точки, в которых функция меняет своё направление, после этого подставляешь значения первой и второй границы интервала и там будет всё видно. А производная воторго порядка отвечала за вопуклость и выгнутость функции (если > 0 то вогнутая, если < 0 то выпуклая). Могу ошибаться.
-------------------- Цитата Imagination is more important than knowledge. Albert Einstein |
volvo |
![]()
Сообщение
#3
|
Гость ![]() |
Вот сюда загляни:
Экстремумы |
![]() ![]() |
![]() |
Текстовая версия | 12.04.2025 11:34 |